- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001001003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Spellings, Matthew (4)
-
Anderson, Joshua A. (2)
-
Dshemuchadse, Julia (2)
-
Glotzer, Sharon C. (2)
-
Martirossyan, Maya M (2)
-
Pan, Hillary (2)
-
Ramasubramani, Vyas (2)
-
Anderson, Joshua (1)
-
Dice, Bradley (1)
-
Dice, Bradley D. (1)
-
Glotzer, Sharon (1)
-
Harper, Eric (1)
-
Harper, Eric S. (1)
-
Marson, Ryan L. (1)
-
Spellings, Matthew P. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Martirossyan, Maya M; Spellings, Matthew; Pan, Hillary; Dshemuchadse, Julia (, Materials Data Facility)This dataset accompanies the “Local structural features elucidate crystallization of complex structures” preprint (https://arxiv.org/abs/2401.13765) by M. M. Martirossyan, M. Spellings, H. Pan, and J. Dshemuchadse. This dataset is built to be used in conjunction with the GitHub code (https://github.com/capecrystal/local-structural-features) for training order metrics with machine learning methods. In this work, we show that this method can distinguish different crystallographic sites in highly complex structures of varying complexity and coordination number, and it can be used to study the growth trajectories of such structures. The dataset includes self-assembly trajectories from 10 different crystal structures and 2 trajectories of the same structure assembling via different crystallization pathways. A README.txt file is included for parsing the data.more » « less
-
Ramasubramani, Vyas; Dice, Bradley D.; Harper, Eric S.; Spellings, Matthew P.; Anderson, Joshua A.; Glotzer, Sharon C. (, Computer Physics Communications)
-
Dice, Bradley; Ramasubramani, Vyas; Harper, Eric; Spellings, Matthew; Anderson, Joshua; Glotzer, Sharon (, Proceedings of the Python in Science Conference)
-
Spellings, Matthew; Marson, Ryan L.; Anderson, Joshua A.; Glotzer, Sharon C. (, Journal of Computational Physics)
An official website of the United States government
